Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Open Forum Infect Dis ; 10(5): ofad190, 2023 May.
Article in English | MEDLINE | ID: covidwho-2316229

ABSTRACT

Background: COVID-19 presents with a breadth of symptomatology including a spectrum of clinical severity requiring intensive care unit (ICU) admission. We investigated the mucosal host gene response at the time of gold standard COVID-19 diagnosis using clinical surplus RNA from upper respiratory tract swabs. Methods: Host response was evaluated by RNA-sequencing, and transcriptomic profiles of 44 unvaccinated patients including outpatients and in-patients with varying levels of oxygen supplementation were included. Additionally, chest X-rays were reviewed and scored for patients in each group. Results: Host transcriptomics revealed significant changes in the immune and inflammatory response. Patients destined for the ICU were distinguished by the significant upregulation of immune response pathways and inflammatory chemokines, including cxcl2 which has been linked to monocyte subsets associated with COVID-19 related lung damage. In order to temporally associate gene expression profiles in the upper respiratory tract at diagnosis of COVID-19 with lower respiratory tract sequalae, we correlated our findings with chest radiography scoring, showing nasopharygeal or mid-turbinate sampling can be a relevant surrogate for downstream COVID-19 pneumonia/ICU severity. Conclusions: This study demonstrates the potential and relevance for ongoing study of the mucosal site of infection of SARS-CoV-2 using a single sampling that remains standard of care in hospital settings. We highlight also the archival value of high quality clinical surplus specimens, especially with rapidly evolving COVID-19 variants and changing public health/vaccination measures.

2.
FEBS Lett ; 595(18): 2323-2340, 2021 09.
Article in English | MEDLINE | ID: covidwho-1332924

ABSTRACT

The COVID-19 pandemic, caused by the SARS-CoV-2 coronavirus, has triggered a worldwide health emergency. Here, we show that ferritin-like Dps from hyperthermophilic Sulfolobus islandicus, covalently coupled with SARS-CoV-2 antigens via the SpyCatcher system, forms stable multivalent dodecameric vaccine nanoparticles that remain intact even after lyophilisation. Immunisation experiments in mice demonstrated that the SARS-CoV-2 receptor binding domain (RBD) coupled to Dps (RBD-S-Dps) elicited a higher antibody titre and an enhanced neutralising antibody response compared to monomeric RBD. A single immunisation with RBD-S-Dps completely protected hACE2-expressing mice from serious illness and led to viral clearance from the lungs upon SARS-CoV-2 infection. Our data highlight that multimerised SARS-CoV-2 subunit vaccines are a highly efficacious modality, particularly when combined with an ultra-stable scaffold.


Subject(s)
Angiotensin-Converting Enzyme 2/immunology , COVID-19 Vaccines/immunology , COVID-19/prevention & control , Receptors, Virus/immunology , Spike Glycoprotein, Coronavirus/immunology , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Bacterial Proteins/chemistry , COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/chemistry , DNA-Binding Proteins/chemistry , Ferritins/chemistry , Humans , Immunization , Mice , Nanoparticles , Protein Domains , Protein Multimerization , Spike Glycoprotein, Coronavirus/chemistry , Sulfolobus
SELECTION OF CITATIONS
SEARCH DETAIL